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Abstract

In low quality soils, as in the Indian state of Maharashtra, a sustainable land

management practice is very important to enhance the soil quality and to main-

tain proper values for several nutrients that are relevant for an optimal crop

yield. The evaluation of a soil fertility index for these nutrients and for each ge-

ographical place allows to create maps of village-wise fertility indices which are

very useful for fertility management. An automatic prediction of such fertility

indices would be very important to reduce the amount of chemical measure-

ments of nutrients to develop in different cultivation lands. The current study

develops such prediction for five important soil nutrients (organic carbon, phos-

phorus pentoxide, iron, manganese and zinc) using 76 regression methods which

belong to a collection of 20 regressor families, including neural networks, deep

learning, support vector regression, random forests, bagging and boosting, lasso

and ridge regression, Bayesian models and more. The best results are achieved

by the extremely randomized regression trees (extraTrees), which achieves an

acceptable prediction accuracy (average squared correlations between 0.57 and

0.70), being also relatively fast. Other regressors with high performance are

random forests and regularized random forest, generalized boosting regression

model (gbm) and epsilon-support vector regression.

∗Corresponding author
Email address: manuel.fernandez.delgado@usc.es (M. Fernández-Delgado)

Preprint submitted to Journal of LATEX Templates September 5, 2017



Keywords: Indian agriculture, soil fertility index, machine learning,

regression, extremely randomized regression trees

1. Introduction

Agriculture is one of the most important economic fields in India, but ur-

banization and industrialization reduces the cultivation land. There is a need of

increase agricultural production without harm the environment and sustainabil-

ity, which requires to plan the soil fertility by supplying essential nutrients to the5

crop in sufficient amount and at right time for its best growth. The soil quality

is a highly significant factor for achieving high crop production, and imbalances

in soil quality reduce the crop health and lead to lower crop yield (Research

Council, 1989). Declining status of soil fertility and mismanagement of soil nu-

trients may be factors for food crises for the world’s population (Gruhn et al.,10

2000). Generally, Indian soil fertility data are summarized for block and district

level. These data are useful for decision making about application of suitable

amounts of fertilizers, policies of fertilizer distribution and consumption in the

view of changes in fertility levels. The creation of maps for village-wise fertil-

ity indices and for several relevant nutrients would be very useful to compare15

levels of soil fertility among villages, and to make fertilizer recommendations

specific for each village. For the development of such maps, much effort in

terms of chemical analysis and time of specialized staff might be avoided if the

direct measurement of the soil fertility through nutrient levels, for each village,

might be replaced by an automatic, accurate enough, prediction. Most of the20

literature about prediction of soil parameters is based on the concept of pedo-

transfer function (PTF), which allows to describe mathematical relations among

soil properties, using measurements to predict or estimate certain soil param-

eters which are missing or whose measurement is time-consuming or expensive

(Bouma, 1989; Pachepsky et al., 2015). The PTF can be formulated using data25

mining, exploration and machine learning regression methods. After reviewing

the literature about PTFs, our objective is to use regression techniques as PTFs
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that predict the village-wise soil fertility indices for several relevant nutrients

as organic carbon (OC), phosphorus pentoxide (P2O5), iron (Fe), manganese

(Mn), and zinc (Zn), using data from the Marathwada region in the Maharash-30

tra state of India. The paper is organized as follows: section 2 analyzes previous

works which use machine learning methods to predict soil parameters; section 3

describes the calculation of village-wise soil fertility indices which are predicted

in the current study; section 4 describes the datasets and regression methods

used for the prediction of fertility indices, and section 5 discusses the results of35

the experimental work. Finally, section 7 compiles the conclusions of this work.

2. Related work

Several studies applied machine learning techniques to solve soil problems

in agriculture. Mucherino et al. (2009) provides a review of the methods used,

among other objectives, to predict the soil fertility, defined as its ability to40

supply the required nutrient levels and water for high quality crop yield. Soil

fertility was predicted using neural networks with Levenberg-Marquadt based

back-propagation (Sheela and Sivaranjani, 2015) and partial least squares re-

gression (Obade and Lal, 2016), whose inputs included soil bulk density, elec-

trical conductivity (EC), available water capacity, soil OC, pewamo silty clay45

loam, glynwood silt loam, kibbie fine sandy loam, crosby silt loam and crosby

celina silt loams soil. Terhoeven-Urselmans et al. (2010) predicted acidity (pH),

alongside with OC and cation exchange capacity from mid-infrared spectra for

several soils using partial least-squares regression and the prediction root mean

square error as quality measure. Jia et al. (2010) applied a Bayesian network for50

soil fertility grading using the soil pH and nutrients as copper (Cu), Fe, potas-

sium (K), Mn, nitrogen (N), phosphorus (P ), OC and Zn. Lamorski et al.

(2008) found that SVM outperforms neural networks to provide a PTF which

predicts the soil total nitrogen using bulk density and soil contents of water, silt,

sand and clay. Jain et al. (2004) focused on PTFs for the prediction of water55

retention and saturated/unsaturated hydraulic conductivity, properties which
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are expensive to measure. Minasny et al. (1999) used multiple-linear regression,

extended nonlinear regression and neural networks to estimate water-retention

PTFs for soils in Australia. In a previous study (Sirsat et al., 2017), we used a

collection composed by 20 classifiers, including random forests, neural networks,60

adaboost, SVM and bagging, among others, to classify several nutrient levels

and village-wise soil fertility indices. The class labels were quantified values

(low, medium and high) of their numeric values. We also classified the soil type

and pH, and the recommended crop for the next cycle. In the current paper, we

use an even larger and more diverse collection of regression methods in order to65

create PTFs which directly predict, without discretization, the numeric values

of fertility indices for several important soil nutrients which will be described

below.

Major nutrients Micro nutrients (parts per million)

OC (%) P2O5 (Kg/ha) Fe Mn Zn

Low < 0.5 10 1 2.5 108

Medium 0.5-0.75 10-24.6 1-2 2.5-4.5 108-280

High > 0.75 24.6 2 4.5 280

Table 1: Intervals defined by the Department of Agriculture & Cooperation (2011) of the

Indian Government for the major and micro nutrients respectively (Muhr et al., 1965; Katyal

and Rattan, 2003).

3. Prediction of village-wise soil fertility indices

The soil of Marathwada is intensively cultivated with novel agricultural prac-70

tices in order to achieve a high crop production. A major factor for soil produc-

tivity is fertility, which primarily deals with ability of soil to supply nutrients

to plants. Fertility of agricultural soil is depleting due to intensive cultivation

practices and inadequate or excesive use of chemical fertilizers. To attenuate

these soil problems, there is a need of knowledge about soil physical and chem-75

ical status. The village-wise fertility indices for several major (OC and P2O5)

and micro (Fe, Mn, Zn) soil nutrients are not only helpful to choose the right
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fertilizer and dose, but also to know about inherent excess and deficiency in

them, i.e., in order to balance nutrients up to critical levels. The OC is very

relevant for the biological activity of the soil and for crop productivity (Reeves,80

1997), while P2O5 is necessary for cell signaling, phosphorylation and bioener-

getics in plants. On the other hand, Fe and Mn are used by chlorophyll during

photosynthesis to absorb energy from light. Finally, Zn contributes to the pro-

duction of plant growth hormones and proteins, being responsible for plant root

development as well as carbohydrate and chlorophyll formation (Arunachalam85

et al., 2013). The Zn affects the crop yield and soil quality1, being the most de-

ficient micro-nutrient in Indian soils by nearly 50% of the required amount. The

agriculture planning of the Indian Government requires to determine the village-

wise soil fertility indices (NI) for the previous nutrients and to quantify their

levels as low, medium and high. Inspired by the previous ideas, the present work90

applies a collection of regression techniques to automatically predict village-wise

soil fertility indices for the previous nutrients using several chemical parameters

of the soil. Rammoorthy and Bajaj (1969) defined the procedure to calculate

the village-wise soil fertility index for a nutrient. First, each cultivation lands

is evaluated, according to its fertility for the corresponding nutrient, as low,95

medium or high using the limits listed in Table 1. Second, the numbers NL,

NM and NH of cultivation lands with low, medium and high fertility levels, re-

spectively, for the nutrient, and the total number of lands NT = NL+NM+NH ,

are determined for each village. Finally, the fertility index NI is calculated using

the following formula:100

NI =
NL + 2NM + 3NH

NT

(1)

The value of NI is a weighted average of the numbers of cultivation lands with

low, medium and high fertility indices, so its value is restricted to the range

1 ≤ NI ≤ 3. Values ofNI near to 1 mean that low fertility fields are predominant

1http://www.zinc.org.in/zinc-nutrient-initiative-in-india
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for that nutrient and village; NI values about 2 are associated to medium fertility

index; and NI values about 3 correspond to high fertility indices. The index105

value is the same for all the patterns in the village, whose cultivation lands share

the same fertility index for every soil nutrient.
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Figure 1: Boxplot of the 11 inputs used for the prediction of the 5 village-wise fertility indices.

4. Material and methods

The current section describes the materials of the current work, which in-

cludes the datasets used to predict the soil fertility indices (subsection 4.1), and110

the collection of regression methods used to develop this prediction (subsection

4.2).
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4.1. Soil data

The objective of the current work is to predict the village-wise fertility in-

dices of five important soil nutrients: organic carbon (OC), phosphorus pen-115

toxide (P2O5), iron (Fe), manganese (Mn), and zinc (Zn). Our study does

not consider village-wise fertility indices for other soil nutrients as nitrous oxide

(N2O), potassium oxide (K2O) nor Cu because the available datasets for these

nutrients only include patterns of one fertility level (low, medium or high). Each

nutrient corresponds to a different prediction (or regression) problem, where the120

nutrient is the output that must be predicted by the regressor. This prediction

is developed using input data with 11 physical and chemical parameters of the

soil: EC, OC, N2O, P2O5, K2O, sulfate (SO4), Cu, Fe, Mn, Zn and boron

(B). The values of the inputs are expressed in Kg/ha for EC, N2O, P2O5 and

K2O; in parts per million for SO4, Cu, Fe, Mn, Zn and B; and in % for OC.125

Figure 1 shows the boxplots of these inputs. The upper and lower ends of each

blue box are the 25% and 75% quartiles, respectively; the red line inside the

box is the input median; finally, the upper and lower black wiskers (resp. the

red crosses) are the extreme values not considered (resp. considered) outliers.

The input ranges are very different: EC, OC, B and Zn are almost bounded130

between 0 and 1, while Cu is between 1 and 2; Fe and Mn are between 1 and 4;

P2O5 and SO4 are between 10 and 30; N2O is between 150 and 200; and K2O

is aproximately between 500 and 900, with outliers until 3500. The input values

are equal for each regresion problem, so the the only difference among the five

regression problems is the output to be predicted. The dataset collection was135

acquired from the Marathwada region by the State Government of Maharashtra

(India) during years 2011 to 2015, and it includes 372 patterns, each one corre-

sponding to a cultivation field located in a certain village. Figure 2 shows the

boxplots of the five outputs: since they are calculated using eq. 1, their values

are bounded between 1 and 3, which correspond to low and high fertility indices,140

respectively. However, there are big differences among boxplots: OC-F, Fe-F

and Zn-F are between 1 and 2 (fertility levels low and medium), while P2O5-F

is between 1 and 3 (levels low, medium and high), and Mn-F is between 2 and
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3 (levels medium and high).
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Figure 2: Boxplot of the village-wise fertility indices for the five nutrients to be predicted.

4.2. Regression methods145

We use a wide collection of 76 regressors belonging to 20 families, which

are briefly described in the list below, grouped by families of related methods.

The majority of them (72 regressors) are implemented in the R language for

statistical computing (R Core Team, 2008), and they were selected from the

list of models2 provided by the Classification and Regression Training (caret)150

package, implemented by Kuhn (2016). Caret provides an interface for the

execution of many classification and regression methods, implemented by dif-

ferent R packages. In the current work, instead of using the interface provided

by caret through its train function, we run the regressors directly using the

corresponding R packages (see the detailed list below), in order to control the155

execution of each single model, and to allow the execution of other 4 popular

regression methods which are implemented in other platforms: 1) deep learn-

ing neural network (which we call dlkeras in the regressor list below), using

the library Keras with Theano interface in the Python programming language;

2) support vector regression, using the LibSVM library (Chang and Lin, 2011)160

2http://topepo.github.io/caret/train-models-by-tag.html
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accesed the via C++ library interface (named svr); 3) generalized regression

neural network (named grnn) included in the Matlab neural network toolbox

(Matlab, 2011); and 4) extreme learning machine with Gaussian kernels (named

elm-kernel), also programmed in Matlab.

Most regressors in our collection have tunable hyperparameters, i.e., param-165

eters which must be specified previously to training, whose values often influence

the regressor performance. In these cases, it is necessary to try several values

for each hyperparameter in a trial-and-error procedure, and to select the value

which provides the best performance. In order to optimize each regressor, its

tunable hyperparameters and the list of values for each hyperparameter should170

be known. For the regressors which are not implemented in R, we directly spec-

ify the list of tunable hyperparameters and the values used for tuning, which

can be extracted from the regressor documentation. For the regressors imple-

mented in R, the caret regressor list (see the link above) already specifies, for

each regressor, the list of its hyperparameters, Besides, caret also provides the175

getModelInfo function, which returns for each regressor a list of reasonable

values which should be used for tuning each hyperparameter. This utility of the

caret package is very useful, because it avoids the need to analyze the docu-

mentation of every regressor in order to know proper values which can be tried

in the hyperparameter tuning. The list of values provided by the getModelInfo180

function is different for each dataset used for training the regressor. However,

in our case the prediction of the five village-wise soil fertility indices shares the

same 11 inputs (subsection 3), so the list of hyperparameter values returned by

getModelInfo is the same for the five regression problems. The hyperparameter

values are specified in the following regressor list. The notation a:b:c means185

a list of values from a to c with step b (where the step is missing, its value is

indented to be 1).

I. Linear regression

1. lm is the linear model provided by the stats package (Bates and Chambers,

1992), which develops multivariate linear regression.190

9



2. rlm implements robust linear model (MASS package), fitted using itera-

tively re-weighted least squares with maximum likelihood type estimation

(Huber, 1981). The only hyperparameter is the Ψ function, whose values

can be huber, which provides a convex optimization problem, hampel and

Tukey bisquare, both with local minima.195

II. Generalized linear regression (GLM)

3. glm is the generalized linear model implemented by the stats package

(Dobson, 1990).

4. penalized is the penalized linear regression (penalized package). The200

regression is regularized by weighting two penalties: L1 penalty, also called

least absolute shrinkage and selection operator (LASSO), is the sum of

absolute values of coefficients; and L2, also called ridge penalty, is the

sum of squared coefficients. The weights of both penalties are tunable

hyperparameters (λ1 and λ2 arguments in the penalized R function)205

with values 1, 2, 4, 8 and 16 each one (Goeman, 2010).

5. glmnet is the LASSO and elastic-net regularized GLM (Simon et al.,

2011) provided by the glm package. The mixing percentage (α argument

in the glmnet function) is tuned with values 0.1:0.1:1, including α=1,

which corresponds to LASSO penalty, and α <1 for elastic-net penalty210

(α=0 corresponds to ridge regression penalty).

6. glmStepAIC is the generalized linear model with stepwise feature se-

lection (Ripley, 2002) using the Akaike information criterion (stepAIC

function in the MASS package).

215

III. Least squares

7. nnls is the non-negative least squares regression (nnls package), which

finds argminx |Ax− b| subject to x ≥ 0 using the method proposed by

Lawson and Hanson (1995).

8. krlsRadial is the radial basis function kernel regularized least squares re-220

gression (KRLS package), which uses Gaussian radial basis functions (Hain-
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mueller and Hazlett, 2013). The regularization parameter (λ), which spec-

ifies the tradeoff between model fit and complexity, is 0.1 and the only

tunable hyperparameter is the kernel spread (σ), with values {10i}2
−7.

225

IV. Partial least squares (PLS)

9. spls is the sparse partial least squares (Chun and Keles, 2010) regression,

implemented by the spls package. The hyperparameters are the number

of latent components (K), with values 1:11, and the threshold (η), with

values 0:0.1:1.230

10. simpls fits a PLS regression model with the simpls method (plsr function

in the pls package, with method = simpls). This regressor (Jong, 1993)

directly calculates the PLS factors as linear combinations of the inputs

maximizing a covariance criterion with orthogonality and normalization

constraints. The only hyperparameter is the number of components used235

by the simpls model, with values 1:10.

11. kernelpls is the PLS regression with method = kernelpls (Jong, 1994)

in the same function and package as spls and simpls, tuning the number

of components with values 1:6.

12. enpls.fs is an ensemble of sparse partial least squares regressors provided240

by the enpls package (Xiao et al., 2016), with maximum number of com-

ponents (maxcomp) equal to 3.

13. plsRglm is the PLS generalized linear model (plsRglm package) with

modele = pls-glm-family. The hyperparameters are the number of ex-

tracted components (nt) and the input significance level (alpha.pvals.245

expli), with values 1:5 and {10i}2
−2, respectively (Bertrand et al., 2014).

V. Least absolute shrinkage and selection operator (LASSO)

14. lasso is the LASSO regression, using the enet function in the elasticnet

package with λ = 0.250

15. relaxo is relaxed LASSO regression (relaxo package), which generalizes

the LASSO shrinkage method for linear regression (Meinshausen, 2007).
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The relaxation and penalty hyperparameters φ and λ are tuned with 10

and 5 values in the ranges 0.1–0.9, and 1.34–163, respectively.

255

VI. Ridge (or Tikhonov) regression

16. ridge (elasticnet package) uses the least angle regression-elastic net

(LARS-EN) algorithm to compute the elastic net regression model (Zou

and Hastie, 2005). The only hyperparameter is the quadratic penalty (or

regularization) parameter λ, with values 0.01, 0.03, 0.05, 0.07 and 0.1.260

17. spikeslab is the spike and slab regression (Ishwaran et al., 2010), which

computes weighted generalized ridge regression estimators using Bayesian

spike and lab model (spikeslab package). The only hyperparameter is

the maximum number of inputs (max.val) considered in the final model,

with values 2 and 11 because there are 11 inputs.265

18. foba develops ridge regression with forward, backward and sparse input

selection (Zhang, 2011), implemented by the foba package. The hyperpa-

rameters are regularization (λ) for ridge regression, with 10 values in the

range 10−5–0.1, and the number of selected inputs (k) for prediction, with

values 2 and 11.270

VII. Neural networks

19. mlpWD is the multi-layer perceptron with one hidden layer and weight

decay (mlp function in the RSNNS package, with learnFunc =Backprop-

WeightDecay, called mlpWeightDecay in the caret model list). The size275

of the hidden layer, with values 1:2:19, and the weight decay, with 5 values

in the range 0–0.1, are the tunable hyperparameters.

20. mlpWDml is the same network but with 3 hidden layers, tuning their

sizes (with values 5:5:15 each one) and the weight decay (5 values between

0 and 0.1), called mlpWeightDecayML in the caret model list).280

21. avNNet is the model averaged neural network (caret package), a com-

mittee of 5 neural networks of the same size trained using different random
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seeds, whose outputs are averaged. The hyperparameters are the network

size, with values 1:2:29, and the weight decay, with values 0, {10−i}42.

22. rbf is the radial basis function network (RSNNS package) which does a285

linear combination of basis functions centered around a prototype (Zell,

1998). The only hyperparameter is the size of the hidden layer, with values

1:2:19.

23. grnn is the generalized regression neural network (Specht, 1991) imple-

mented by the Matlab neural network toolbox. The Gaussian spread is a290

hyperparameter, tuned with 10 values in the range 0.001–2. Large (resp.

small) spread values lead to smooth (resp. close) approximations.

24. elm (elmNN package) is the extreme learning machine (Huang et al., 2012).

The tunable hyperparameters are the number of hidden neurons, with

values 1:2:39, and the activation function of the neuron, which can be295

sinus, radial basis, linear and hyperbolic tangent.

25. elm-kernel is the ELM neural network but with Gaussian kernel (Huang

et al., 2012) using the publicly available Matlab code3. The hyperparam-

eters are the regularization parameter C and kernel spread with values

{2i}14
−5 and {2i}8

−16, respectively.300

26. pcaNNet is a multi-layer perceptron neural network with one hidden

layer trained on the PCA-mapped training patterns (caret and nnet pack-

ages). The tunable hyperparameters are the size of the hidden layer and

the weight decay, with values 1:2:39 and 0, {10−i}41, respectively.

27. bdk (kohonen package) is the supervised bi-directional Kohonen network305

(Melssen et al., 2006). The hyperparameters are the sizes of both maps,

with values 1:5 and 2:6, respectively, and the initial weight given to the

input map in the distance calculation for the output map, and vice versa

(values 0.5:0.1:0.9).

310

3http://www.extreme-learning-machines.org
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VIII. Deep learning neural networks

28. dlkeras is the deep learning neural network using the Keras module (Chol-

let, 2015), written in the Python programming language. This network

has three hidden layers tuned with 50 and 75 neurons for each layer (27

combinations). The deep learning methods (Hinton et al., 2006; Liu et al.,315

2017) are very popular, specially for image classification, and we included

them in this comparison for regression tasks.

29. dnn (DeepNet package) implements a deep belief network (DBN) in R.

It uses three hidden layers and initializes weights using the DBN method,

tuning their numbers of neurons with 3 values each one.320

IX. Support vector machines

30. svr is the epsilon-support vector regression with Gaussian kernel, using

the C++ interface to the LibSVM library (Chang and Lin, 2011) . The

regularization hyperparameter C and the kernel spread γ are tuned with325

the same values as elm-kernel (see above).

31. svmRadial is another implementation of SVR with Gaussian kernel (ksvm

function in the kernlab package) for regression (type = eps-svr), using

sequential minimal optimization (SMO) proposed by Platt (1998) to solve

the quadratic SVM problem. The kernel spread and regularization pa-330

rameter are tuned with 6 values in the range 0.03–0.24 and with values

{2i}5
−4, respectively.

32. rvmRadial is the relevance vector machine (Tipping, 2001) with Gaus-

sian kernel (kernlab package). The Gaussian spread is not tuned, but

estimated by the getModelInfo function in the caret package, with value335

0.1176.

X. Regression trees

33. rpart is the recursive partitioning and regression tree (Breiman et al.,

1984) using the rpart package. Only the complexity parameter (cp) in340

the rpart.control function is tuned with 10 values between 0.013 to 0.34.
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34. nodeHarvest is a simple interpretable tree-based ensemble for high-

dimensional regression (nodeHarvest package) with sparse results (Mein-

shausen, 2010). The hyperparameters are the maximal interaction depth

(maxint), with values 1:10, and the mode, which can be mean (weighted345

group means) or outbag (zero values in the smoothing matrix diagonal).

35. M5 is the model tree (Quinlan, 1992), implemented by Weka and accesed

through the RWeka package, tuning three flags: pruned and smoothed,

with values yes and no each one, and rules/trees, a flag to select between

a tree of a rule set (tree worked better in our experiments).350

36. ctree2 is the conditional inference tree (ctree function in the party pack-

age), which estimates the output using inference after a recursive parti-

tioning the input space (Hothorn et al., 2006). The hyperparameters,

specified in the ctree control function, are the threshold mincriterion

for 1 − p in order to do a split (p is the p-value of the Bonferroni statis-355

tical test, used by default), with values between 0.01 and 0.99, and the

maximum tree depth (maxdepth), with values 1:10.

37. partDSA develops partitioning using deletion (D), substitution (S), and

addition (A), implemented by the partDSA package (Molinaro et al., 2010).

The only tunable hyperparameter is the maximum number of terminal360

partitions (cut.off.grow), with values 1:10. The vfold argument of the

DSA.control function is set to 1.

38. evtree is the evolutionary regression tree (evtree package), called “tree

model from genetic algorithms” in the caret model list (Grubinger et al.,

2014). It uses genetic algorithms to learn globally optimal regression trees.365

The only hyperparameter is the complexity of the cost function (α), which

weights negatively large tree sizes, tuned with 10 values between 1 and 3.

XI. Bagging ensembles

39. bag is the bagging ensemble of conditional inference regression trees (Breiman,370

1996), implemented by the caret package. The output for a test pattern

is the average of the outputs over all the base regression trees.
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40. bagEarth is the bagged multivariate adaptive regression splines (MARS).

Is is a bagging ensemble of MARS base regressors (see the family “other

methods” below), implemented by the caret and earth packages. The375

only hyperparameter is the maximum number of terms (nprune) in the

pruned regression model, with 10 values between 2 and 17.

41. treebag is the bagged classification and regression tree (CART), a bag-

ging ensemble of regression trees implemented by the ipredbagg function

in the ipred package.380

XII. Boosting ensembles and gradient boosting machines

42. randomGLM is a boosting ensemble of generalized linear models pro-

vided by the randomGLM package (Song et al., 2013). This model uses

several bootstrap samples (100 by default) of the training set, randomly385

selecting inputs and interaction terms among them depending on the max-

imum interaction order (hyperparameter maxInteractionOrder, tuned

with values 1:3).

43. BstLm is the gradient boosting machine (Friedman, 2001) with linear

base regressors (bst function in the homonymous package, with learner390

= ls). The only hyperparameter is the number of boosting iterations

(mstop), with values 50:50:500.

44. bstSm (bst package) is the gradient boosting with smoothing splines

(learner = sm) as base regressors, tuning the number of boosting itera-

tions (mstop) equally to BstLm.395

45. bstTree is the gradient boosting with regression base trees (bst package).

The hyperparameters are the number of boosting iterations (mstop) with

values 50:50:250, and the maximum depth of nodes (maxdepth) in the

final tree, specified by the rpart.control function in the rpart package,

tuned with values 1:5.400

46. glmboost is the gradient boosting ensemble with GLM base learners

(glmboost function in the mboost package), tuning the number of boosting

iterations (mstop) equal to BstLm.
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47. gbm is the generalized boosting regression model, called stochastic gra-

dient boosting in the caret list (gbm package). The hyperparameters405

are the maximum depth of input interactions (interaction.depth), with

values 1:5, and the number of trees for prediction (n.trees), with values

50:50:250. We use a Gaussian distribution and shrinkage=0.1.

48. blackboost is the gradient boosting (blackboost function in the mboost

package) with conditional inference regression trees as base learners and410

arbitrary loss functions (Buehlmann and Hothorn, 2007). The hyperpa-

rameters are the maximum tree depth (maxdepth), with values 1:10, and

the number of boosting iterations (mstop), tuned as bstTree.

49. xgbTree is the extreme gradient boosting (Friedman, 2001), which uses

the xgb.train function in the xgboost package with booster = gbtree415

and linear regression as objective function. The hyperparameters are the

maximum depth of the tree (max depth), with values 1:7, the maximum

number of boosting iterations (nrounds), with values 50:50:150, and the

learning rate (η), with values 0.3 and 0.4.

50. xgbLinear is the same extreme gradient boosting, but with booster =420

gblinear (xgboost package). Its hyperparameters are the L2 (square loss)

regularization term on weights (λ) and bias (α), both with values 0, 0.1

and 0.0001, and the number of iterations (nrounds), with values 50:50:150.

XIII. Random forests (RF)425

51. rf is the random forest ensemble of random regression trees provided by

the randomForest package (Breiman, 2001), whose output is the average

of the regression trees outputs. Its only hyperparameter is the number

of inputs randomly selected at each tree (mtry parameter), with values 2

and 11, which is the number of inputs.430

52. Boruta (Kursa and Rudnicki, 2010) is the random forest ensemble with

additional feature selection (Boruta package). The only hyperparameter

is mtry, tuned as rf.

53. RRF is the regularized RF, which uses regularization to select inputs in
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random forest (RRF package). The hyperparameters are mtry, with values435

2, 6 and 11, and the regularization coefficient (coefReg), with values 0.01,

0.505 and 1.

54. cforest (party package) is a random forest ensemble of conditional infer-

ence trees (Breiman, 2001), each one fitting one bootstrap sample. The

only hyperparameter is mtry, tuned as rf.440

55. qrf is the quantile regression forest (quantregForest package), a tree-

based ensemble which generalizes RF in order to estimate conditional

quantile functions. The mtry parameter is tuned as rf. The quantile pre-

diction threshold (what argument in the predict.quantregForest func-

tion) is set to 0.5.445

56. extraTrees (Geurts et al., 2006) is the ensemble of extremely randomized

regression trees (extraTrees package). Its tunable hyperparameters are

mtry (same values as rf), and the minimum sample size to split a node

(numRandomCuts), with values 1:10.

450

XIV. Prototype models

57. kknn (Hechenbichler and Schliep, 2004) performs weighted k-nearest neigh-

bors regression (kknn package). The only hyperparameter is the num-

ber of neighbors (k), with values 5:2:23. The default optimal kernel and

Minkowski distance are used.455

58. cubist (Cubist package) learns a M5 rule-based model with corrections

based on nearest neighbors in the training set (Quinlan, 1993). Its hy-

perparameters are the number of training committees, with values 1, 10

and 20, and the number of neighbors for prediction, with values 0, 5 and 9.

460

XV. Bayesian models

59. bayesglm is the Bayesian GLM (arm package). It uses the expectation

maximization method to update the β values in GLM at each iteration,

representing the prior information with an augmented regression (Gelman
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et al., 2009). The coefficients are calculated using a student-t prior distri-465

bution.

60. brnn (Foresee and Hagan, 1997) is the Bayesian regularized neural net-

work (brnn package). The Bayesian regularization (MacKay, 1992) deter-

mines the weights of two terms (squared error and squared sum of network

weights) based on inference techniques. The weights are not normalized,470

and the number of hidden neurons is a hyperparameter tuned with values

1:20.

61. bartMachine (Kapelner and Bleich, 2016) is the Bayesian additiveregres-

sion tree (bartMachine package). The tunable hyperparameters are the

prior boundary (k), with values 2, 3 and 5, and the base value in tree prior475

to decide if a node is terminal or not (α), with values 0.9, 0.945 and 0.99.

XVI. Principal component regression

62. pcr develops principal component regression (pls package). This method

models the output using classical linear regression with coefficients es-480

timated with PCA, i.e., using the principal components instead of the

original inputs (Mevik and Cederkvist, 2004). The number of components

(ncomp) is tuned with values 1 and 2.

63. icr is the independent component regression (caret package). It fits a lin-

ear regression model using independent component analysis (ICA), imple-485

mented by the fastICA package, instead of the original inputs (Hyvarinen

and Oja, 2000). The only hyperparameter is the number of independent

components (n.comp), with values 1:11.

64. superpc (Bair and Tibshirani, 2004) is the supervised PCA (superpc

package). The number of principal components, with values 1:3, and the490

threshold for retaining the input scores, with values 0.1 and 0.9, are the

tunable hyperparameters.
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XVII. Generalized additive models (GAM)

65. gam (mgcv package) is the generalized additive model using splines (Wood,495

2011). The only hyperparameter is select, a boolean flag which adds,

when true, an extra penalty term to each function penalizing its wiggli-

ness (waving).

66. gamboost (mboost package) is the boosted generalized additive model

(Buehlmann and Yu, 2003). The only hyperparameter is the number of500

initial boosting iterations (mstop), with values 50:50:500.

XVIII. Gaussian processes

67. gaussprLinear implements Gaussian process regression with linear ker-

nel, called vanilladot in the gausspr function of the kernlab package.505

68. gaussprRadial uses the same function (with kernel = rbfdot for a

Gaussian kernel) and package. By default, the kernel spread is calculated

automatically, with value 0.1145.

69. gaussprPoly is the same method with polynomial kernel (polydot), tun-

ing the kernel hyperparameters degree and scale, with values 1:3 and510

{10−i}31, respectively.

XIX. Quantile regression

70. rqlasso develops quantile regression with LASSO penalty, using the rq.

lasso.fit function in the rqPen package. This method fits a quantile515

regression model with the LASSO penalty (Mizera and Koenker, 2014),

tuning the regularization hyperparameter (λ), with 10 values from 0.1 to

10−4.

71. rqnc performs non-convex penalized quantile regression, with the rq.nc.

fit function in the same rqPen package. This regressor performs penalized520

quantile regression using local linear approximation (Zou and Li, 2008)

to maximize the penalized likelihood for non-convex penalties. The two

hyperparameters are λ, with the same 10 values as rqlasso, and the penalty
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type, which can be MCP (minimax concave penalty) or SCAD (smoothly

clipped absolute deviation).525

72. qrnn (Cannon, 2011) is the quantile regression neural network (qrnn pack-

age). The hyperparameters are number of hidden neurons and the penalty

for weight decay regularization, with values 1:2:19 and 0, {10−i}41 respec-

tively.

530

XX. Other methods

73. lars (Efron et al., 2004) is the least angle regression (Lars package). The

lasso type and fraction mode are specified for training and prediction

respectively, and the fraction hyperparameter s is tuned with 10 values

from 0.05 to 1.535

74. earth (Friedman, 1991) is the multivariate adaptive regression spline

(MARS), implemented by the earth package. The maximum number

of terms in the model (nprune) is tuned with values 2:17.

75. ppr performs the projection pursuit regression (Friedman and Stuetzle,

1981), implemented by the stats package. The coefficients are iteratively540

calculated to minimize a projection pursuit (fitting criterion, given by

the fraction of unexplained variance which is explained by each function)

until it falls below a predefined threshold. The only hyperparameter is the

number of terms to be included in the final model (nterms), tuned with

values 1:10.545

76. sbc (frbs package) is the subtractive clustering and fuzzy c-means rules

(Chiu, 1996). This method iteratively selects the cluster centers as training

patterns with a high potencial function, which increases with the number

of nearby neighbors. Once all the centers are selected, they are optimized

using fuzzy C-means. The only hyperparameter is the neighborhood radius550

(r.a argument of the control list in the frbs.learn function), tuned with

7 values between 0 and 1.
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5. Results and discussion

In order to evaluate the quality of the regressors in the prediction of the

five village-wise soil fertility indices (OC, P2O5, Fe, Mn and Zn), we used a555

variant of the well-known cross-validation methodology (Kohavi, 1995) which

is specially adequate for methods with tunable hyperparameters. This variant

uses three datasets (training, validation and test), instead of classical cross-

validation, which only uses training and test datasets. The reason to use three

sets instead of two is the existence of tunable hyperparameters. With only two560

datasets, we only have the test set: 1) to evaluate the model performance with

each hyperparameter value in order to select the best one; and 2) to evaluate the

performance of the final model with the selected value. However, doing this the

final performance is optimistically biased, because it is measured in the same

test set where the model, trained with the selected value of the hyperparameter,565

achieved its best performance. Thus, the performance of the final model for

other datasets would be expected to be lower. The need to select an “optimal

value” for the tunable hyperparameters requires to evaluate the model, trained

for each hyperparameter value, in a dataset different to the test set, where the

performance of the final model, trained with the best hyperparameter values,570

will be tested. Hence the need of validation datasets. In order to develop

the experiments, we created ten random partitions of the datasets. Remember

from subsection 4.1 that the five regression problems include 372 patterns, each

one corresponding to a cultivation land, with 11 inputs. All the inputs and

outputs are pre-processed (standarized) in order to have zero mean and standard575

deviation one. For each partition, 50% of the patterns are selected for training,

25% for validation (which is used to evaluate the performance of the model

trained with each hyperparameter value during tuning) and 25% for test (where

the model trained with the selected hyperparameter value, which maximizes

the average performance over the validation sets, is tested). In our case, there580

are 186 training, 93 validation and 93 test patterns. Each regressor is trained

on the 10 training partitions for each combination of its hyperparameter values
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(regressors may have zero, one, two or three tunable hyperparameters), and

tested on its corresponding validation partition. The performance measures

used are the root mean square error (RMSE) and the coefficient of determination585

(R2), defined as the proportion of the input variance which is explained by the

regressor output, which is equal to the square of the correlation coefficient R:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − di)2, R2 =

[

N
∑

i=1

(yi − ȳ)
(

di − d̄
)

]2

N
∑

i=1

(yi − ȳ)
2

N
∑

i=1

(

di − d̄
)2

(2)

where N is the number of test patterns, yi and di are the predicted (by the

regressor) and true output, respectively, and ȳ and d̄ are the averages of yi and

di, with i = 1, . . . , N , respectively. For each combination of hyperparameter590

values, the average RMSE over the 10 validation sets is calculated, and the

combination with the lowest RMSE is selected for testing. Finally, the regressor

is trained, using this selected combination of its hyperparameter values, on the

10 training partitions, and tested on the 10 test partitions. The average RMSE

and R2 over the 10 test sets are used as the final performance measures.595

5.1. Analysis by soil dataset

Table 2 reports the R2 values for the prediction of OC village-wise soil fertil-

ity index, sorted by decreasing values. The random forest with feature selection

(Boruta) achieves the highest R2 value (0.69815), followed by regularized ran-

dom forests (RRF), random forest (rf) and extremely randomized regression600

trees (extraTrees), whose R2 value are above 0.69. In order to evaluate the

meaning of these values, we can use the classical definition of Colton (1974)

for the correlation intervals and their significance. These intervals, translated

into values of determination coefficient (R2), are the following: a R2 value in

the range 0–0.0225 means that the two vectors under comparison (in our case,605

these vectors are the true and predicted values of the village-wise soil fertil-

ity index for each nutrient) are not correlated at all; R2 between 0.0225 and
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0.25 mean bad to moderate correlation between them; R2 between 0.25 and

0.5625 mean moderate to good correlation; and R2 > 0.5625 mean very good

to excellent correlation. The values of R2 achieved by Boruta and the following610

regressors are about 0.69, which correspond to a very good to excellent correla-

tion with the true OC fertility index. Other regressors with R2 about 0.66 are

gradient boosting of regressor trees (bstTree), gradient boosted machine (gbm),

Bayesian additive regression tree (bartMachine) and simple interpretable tree-

based ensemble for high-dimensional regression (nodeHarvest). The remaining615

regressors achieve R2 below 0.65. Note that all the regressors exhibit R2 above

0.2 excepting the last 6 regressors (from mlpWDml to partDSA), which are not

able to learn the regression problem. Figure 3 depicts the output of the best

Regressor R2 Regressor R2 Regressor R2 Regressor R2

Boruta 0.69815 cforest 0.60614 spikeslab 0.50615 gaussprLinear 0.43974

RRF 0.69667 treebag 0.59523 lars 0.50369 glm 0.43889

rf 0.69660 brnn 0.58261 glmStepAIC 0.50252 lm 0.43889

extraTrees 0.69189 blackboost 0.56922 rqlasso 0.50040 lasso 0.43889

bstTree 0.67383 grnn 0.56327 spls 0.49312 gam 0.43889

gbm 0.66724 penalized 0.55751 rqnc 0.49116 pcaNNet 0.43857

bartMachine 0.66485 ppr 0.54940 mlpWD 0.48570 enpls.fs 0.43491

nodeHarvest 0.66388 rbf 0.54533 foba 0.48423 rpart 0.43102

qrf 0.65764 avNNet 0.54273 xgbLinear 0.48143 randomGLM 0.42962

cubist 0.64978 bagEarth 0.54094 earth 0.47925 evtree 0.39976

svr 0.63567 SBC 0.53885 bdk 0.47728 BstLm 0.36877

krlsRadial 0.61692 xgbTree 0.53665 elm 0.47169 superpc 0.34595

gaussprRadial 0.61548 kernelpls 0.52951 rlm 0.46442 nnls 0.28929

svmRadial 0.61537 simpls 0.52951 plsRglm 0.46375 mlpWDml 0.05533

gamboost 0.61451 dlkeras 0.52746 ridge 0.45061 pcr 0.00280

rvmRadial 0.61086 relaxo 0.52545 M5 0.44782 icr 0.00149

bstSm 0.61072 qrnn 0.51859 gaussprPoly 0.44605 dnn 0.00124

kknn 0.60791 bag 0.51410 ctree2 0.44506 glmnet 0.00000

elm-kernel 0.60701 glmboost 0.51175 bayesglm 0.44234 partDSA 0.00000

Table 2: Values of R2 achieved by each regressor for the prediction of OC village-wise soil

fertility index, sorted decreasingly.
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Figure 3: Scatter plot of true and predicted OC fertility index using the best regressor

(Boruta). The yellow squares are the areas where the predicted indices (vertical coordinates

of the blue dots) are rounded to the same integer as the true index (horizontal coordinates of

the blue dots).

True/Predicted Low Medium

Low 248 49

Medium 77 556

Table 3: Confusion matrix achieved by Boruta rounding the true and predicted OC village-

wise soil fertility index to their nearest integer values.

regressor (Boruta) in the vertical axis, and the right value of OC soil fertility

index in the horizontal axis, for all the test patterns (930, because there are 10620

test partitions with 93 patterns each one). In order to evaluate the quality of

the prediction, both values are plotted in their original scales, before data stan-

darization. Thus, we can evaluate how much the predicted OC fertility index

differs from the true value. Since the OC fertility of the Marathwada soils is

not high, the true fertility index ranges between 1 and 2 (low and medium fer-625

tilities, respectively), and the indices predicted by Boruta are also in the same

range. In fact, if we round the true and predicted indices to the nearest integer,

both roundings agree for 86.45% of the test patterns. This is the accuracy that
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Boruta would achieve if we transform the regression problem in a classification

problem where the classes are the OC fertility indices, rounded to their nearest630

integer (see the accuracy in the figure title). The yellow squares in the plot

show the places where the patterns are well classified. The blue points that are

placed inside (resp. outside) these squares are correctly (resp. wrong) classi-

fied, because the rounded true and predicted indices agree (resp. disagree), and

only few patterns are located outside the yellow squares. Table 3 reports the635

confusion matrix of Boruta for this classification problem. From this matrix,

the Cohen kappa (κ), which measures the agreement between the classifier and

the true class labeling discarding the probability of agreement by chance (Viera

and Garrett, 2005), is also high (69.6%), although always lower than the accu-

Regressor R2 Regressor R2 Regressor R2 Regressor R2

extraTrees 0.60301 gaussprRadial 0.52148 pcaNNet 0.37141 glmboost 0.12920

RRF 0.60115 brnn 0.51527 bagEarth 0.35866 enpls.fs 0.10175

qrf 0.59993 nodeHarvest 0.51320 mlpWD 0.35857 pcr 0.08860

gbm 0.59991 blackboost 0.49348 bdk 0.34899 bstSm 0.08298

Boruta 0.59981 M5 0.45782 randomGLM 0.33879 rlm 0.05088

rf 0.59684 bag 0.45738 nnls 0.33878 glmStepAIC 0.03505

svr 0.59588 ppr 0.44975 rqnc 0.33383 spikeslab 0.03259

cubist 0.59252 xgbTree 0.44588 rqlasso 0.33280 xgbLinear 0.02643

bstTree 0.58502 SBC 0.44563 gamboost 0.28844 ridge 0.02539

bartMachine 0.57282 rbf 0.44437 evtree 0.27929 bayesglm 0.01853

svmRadial 0.56714 qrnn 0.44347 foba 0.26488 gaussprLinear 0.01670

krlsRadial 0.55043 penalized 0.43679 dlkeras 0.25324 glm 0.01623

avNNet 0.53810 elm 0.40851 BstLm 0.23718 lm 0.01623

rvmRadial 0.53588 rpart 0.39155 plsRglm 0.20345 lasso 0.01623

cforest 0.53568 relaxo 0.38994 earth 0.17010 gam 0.01623

elm-kernel 0.53475 spls 0.38386 lars 0.15086 gaussprPoly 0.01211

kknn 0.53335 kernelpls 0.38350 icr 0.15069 partDSA 0.00986

treebag 0.52475 simpls 0.38350 superpc 0.14513 dnn 0.00575

grnn 0.52401 ctree2 0.38011 mlpWDml 0.14044 glmnet 0.00084

Table 4: Values of R2 achieved by the regressors for the prediction of P2O5 village-wise soil

fertility index.
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racy. These values show that the performance of Boruta is enough for a reliable640

prediction of this fertility index.
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Figure 4: Scatter plot of true values (horizontal axis) and values predicted by extraTrees

(vertical axis) of the P2O5 soil fertility index.

True/Predicted Low Medium High

Low 125 145 0

Medium 1 586 1

High 3 41 28

Table 5: Confusion matrix achieved by extraTrees rounding the true and predicted P2O5

village-wise soil fertility indices to their nearest integer.

With respect to P2O5 village-wise soil fertility index, Table 4 reports the

R2 achieved by each regressor. In this case, extraTrees achieves the best R2

(0.60301, very good to excellent in the Colton scale) alongside with RRF, quan-

tile regression forest (qrf), gbm, Boruta, rf, support vector regression (svr) and645

M5 rule model corrected by nearest neighbors (cubist), all with values about

0.60, less than for OC fertility index. Figure 4 is the corresponding scatter plot

of the original P2O5 soil fertility indices and the values predicted by extraTrees.

In this case, the values are in the range between 1 and 3, including patterns (i.e.,
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cultivation lands) with low, medium and high P2O5 fertility indices. The plot650

shows that prediction is right (accuracy 79.46% and κ= 52.51%) for most of the

patterns with medium fertility (placed in the center yellow square). However,

for most patterns with low and high indices the predicted values are middle,

so they fall outside the squares. Table 5 reports the confusion matrix for such

a classification problem, where the terms true low/predicted medium (in the655

first row and second column) and true high/predicted medium (third row and

second column) are higher than the corresponding diagonal terms.

Regressor R2 Regressor R2 Regressor R2 Regressor R2

extraTrees 0.66652 grnn 0.51967 penalized 0.33675 plsRglm 0.06026

rf 0.65923 xgbTree 0.50750 elm 0.32940 glmboost 0.03743

RRF 0.65703 avNNet 0.47499 relaxo 0.27555 dnn 0.03734

Boruta 0.65093 earth 0.47386 nnls 0.26595 gaussprPoly 0.03163

bstTree 0.62280 bag 0.45247 rqnc 0.26566 enpls.fs 0.02601

gbm 0.62250 blackboost 0.44578 dlkeras 0.26485 spikeslab 0.01620

qrf 0.62056 brnn 0.44328 mlpWD 0.25959 rlm 0.01175

cubist 0.60060 gamboost 0.43894 foba 0.24628 randomGLM 0.00347

nodeHarvest 0.58885 SBC 0.43771 kernelpls 0.24505 xgbLinear 0.00292

bartMachine 0.58080 rbf 0.42042 simpls 0.24505 glmnet 0.00159

svr 0.57207 bagEarth 0.41911 rqlasso 0.23354 glmStepAIC 0.00157

krlsRadial 0.57181 bdk 0.41487 superpc 0.22517 bayesglm 0.00141

svmRadial 0.55790 bstSm 0.41329 icr 0.19926 ridge 0.00139

elm-kernel 0.55696 qrnn 0.40408 pcr 0.17496 gaussprLinear 0.00094

gaussprRadial 0.55238 ppr 0.39852 M5 0.17016 glm 0.00092

treebag 0.54950 ctree2 0.38632 lars 0.11877 lm 0.00092

cforest 0.54369 rpart 0.37844 BstLm 0.07228 lasso 0.00092

rvmRadial 0.53953 pcaNNet 0.37068 spls 0.06965 gam 0.00092

kknn 0.53278 evtree 0.35403 mlpWDml 0.06801 partDSA 0.00078

Table 6: Values of R2 for the prediction of Fe village-wise soil fertility index.

Again, the best regressor for the prediction of Fe village-wise soil fertility

index (Table 6) is extraTrees, achieving R2= 0.66652 (very good to excellent in

the Colton scale). The R2 values of the following regressors fall very fast: rf660

and RRF (about 0.659), Boruta (0.650) and a group of regressors (bstTree, gbm
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Figure 5: Scatter plot of true Fe soil fertility index and values predicted by extraTrees.

and qrf) about 0.622. The cubist achieves 0.600, and the remaining are already

below 0.58. Figure 5 shows the true and predicted Fe fertility indices for the

test sets, which belong to levels low and medium. The accuracy (79.03%), or

percentage of patterns which fall inside the yellow squares, is lower than for665

OC fertility, which gives a smaller κ (56.19%). However, the confusion matrix

(Table 7) shows that the number of low patterns which are classified as medium

is relatively low (10.2% of the low patterns), while more medium patterns are

classified as low (34.9% of the medium patterns).

True/Predicted Low Medium

Low 473 54

Medium 141 262

Table 7: Confusion matrix achieved by extraTrees rounding the true and predicted Fe village-

wise soil fertility index.

For the prediction ofMn village-wise soil fertility index (Table 8), extraTrees670

achieves the best R2 (0.57499), which according to the Colton scale can be con-

sidered as very good to excellent. The following five regressors (RRF, bstTree,

rf, Boruta and gbm) work sensibly worse, with R2 about 0.54. Afterwards, the
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Regressor R2 Regressor R2 Regressor R2 Regressor R2

extraTrees 0.57499 avNNet 0.47010 elm 0.31200 xgbLinear 0.11012

RRF 0.54935 grnn 0.46975 kernelpls 0.30838 rlm 0.10505

bstTree 0.54631 treebag 0.46004 simpls 0.30838 foba 0.10295

rf 0.54572 earth 0.44231 bdk 0.30613 ridge 0.09627

Boruta 0.54305 xgbTree 0.42529 rpart 0.30403 mlpWDml 0.09540

gbm 0.54285 pcaNNet 0.42044 nnls 0.28009 pcr 0.08889

svr 0.53824 bagEarth 0.41290 glmboost 0.27325 bayesglm 0.08209

cubist 0.53317 rbf 0.39635 rqnc 0.26635 gamboost 0.08036

svmRadial 0.52417 mlpWD 0.39625 evtree 0.25813 gaussprLinear 0.07573

qrf 0.52347 SBC 0.39298 rqlasso 0.25330 glmStepAIC 0.07511

rvmRadial 0.51616 bag 0.38973 BstLm 0.21673 glm 0.07458

krlsRadial 0.51495 blackboost 0.38479 lars 0.20178 lm 0.07458

gaussprRadial 0.50518 M5 0.38474 plsRglm 0.19425 lasso 0.07458

nodeHarvest 0.50315 brnn 0.38272 spls 0.19379 gam 0.07458

bartMachine 0.50297 penalized 0.35816 enpls.fs 0.18956 bstSm 0.05226

cforest 0.49539 ppr 0.33826 gaussprPoly 0.18410 dnn 0.04960

kknn 0.49437 qrnn 0.33438 superpc 0.18124 icr 0.02950

elm-kernel 0.49368 relaxo 0.31610 randomGLM 0.17986 glmnet 0.00001

dlkeras 0.49090 ctree2 0.31319 spikeslab 0.17081 partDSA 0.00000

Table 8: Values of R2 for the prediction of Mn village-wise soil fertility index.

following regressors fall very fast: svr and cubist (about 0.53), svmRadial and

qrf (0.52), rvmRadial and krlsRadial (0.52) and so on. The Mn soil fertility675

indices belong to levels low, medium and high (Figure 6), and the reason of the

poor R2 is the amount of low and high patterns for which the predicted values

are near to medium. However, the proportion of patterns assigned to the correct

indices is high (accuracy 86.13%), and κ is also high (71.08%). The confusion

matrix (Table 9) also reports that almost all the low patterns are assigned to680

medium levels (just 1 of 11 low patterns is predicted as low), while a relatively

reduced percentage (15.95%) of high patterns are predicted as medium.

Finally, the best R2, achieved by extraTrees, is fairly high (0.70712) for

the prediction of Zn fertility index (Table 10). In this case, the difference to

the following regressor (cubist, whose R2 = 0.630) is huge. Like the previous685
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Figure 6: Scatter plot of true Mn soil fertility indices and values predicted by extraTrees.

True/Predicted Low Medium High

Low 1 10 0

Medium 0 505 63

High 0 56 295

Table 9: Confusion matrix created by rounding the true Mn soil fertility indices and predicted

values by extraTrees.

indices, the R2 of the following regressors decreases very quickly: commitee of

neural networks (avNNet, 0.62); svr and gbm (0.61); qrf, rf and Boruta (0.60).

The remaining regressors are already about 0.59 and so on. Figure 7 plots

the corresponding scatter plot for extraTrees: there are only low and medium

test patterns, and the percentage of patterns whose rounded predicted index is690

correct (i.e., inside the yellow squares) is very high (accuracy 97.63%), which

gives a high κ (81.03%). The confusion matrix (Table 11) reports the extremely

reduced percentage of low patterns predicted as medium, although more medium

patterns are predicted as low (29.2%).

31



Regressor R2 Regressor R2 Regressor R2 Regressor R2

extraTrees 0.70712 SBC 0.46920 bagEarth 0.23394 rlm 0.08637

cubist 0.63069 brnn 0.46774 rbf 0.21590 lars 0.08461

avNNet 0.62473 pcaNNet 0.45139 kernelpls 0.18168 plsRglm 0.08374

svr 0.61531 treebag 0.44831 simpls 0.18168 elm 0.07797

gbm 0.61373 cforest 0.43893 BstLm 0.11358 gaussprPoly 0.07442

qrf 0.60643 nodeHarvest 0.43840 xgbLinear 0.10238 rqnc 0.07356

rf 0.60526 evtree 0.41917 bayesglm 0.09802 mlpWDml 0.06757

Boruta 0.60106 dlkeras 0.41058 glm 0.09578 nnls 0.06307

RRF 0.59920 rvmRadial 0.40722 lm 0.09578 earth 0.03920

krlsRadial 0.59675 blackboost 0.38481 lasso 0.09578 foba 0.03078

bstTree 0.59590 qrnn 0.38024 gam 0.09578 partDSA 0.01036

svmRadial 0.59582 xgbTree 0.35661 gaussprLinear 0.09567 icr 0.00970

bartMachine 0.59327 rpart 0.33419 glmStepAIC 0.09534 dnn 0.00714

elm-kernel 0.55800 bag 0.33220 spikeslab 0.09492 glmnet 0.00537

kknn 0.53341 penalized 0.29990 ridge 0.09394 randomGLM 0.00240

grnn 0.51415 M5 0.29530 rqlasso 0.09286 gamboost 0.00075

gaussprRadial 0.50238 bdk 0.27797 spls 0.09153 pcr 0.00026

mlpWD 0.48543 ctree2 0.27698 enpls.fs 0.08895 bstSm 0.00017

ppr 0.47525 relaxo 0.24021 glmboost 0.08858 superpc 0.00000

Table 10: Values of R2 for the prediction of Zn village-wise soil fertility index.

True/Predicted Low Medium

Low 857 1

Medium 21 51

Table 11: Confusion matrix of extraTrees for Zn soil fertility index.

6. Global discussion695

Considering the results over all the soil datasets, extraTrees achieves the

most accurate prediction of soil fertility indices for four of five nutrients (P2O5,

Fe, Mn and Zn), being the fourth for OC, very near (difference 0.007) to the

best regressor (Boruta). Besides, other four regressors of the random forest

family (rf, RRF, Boruta and qrf) are among the first ten regressors for the six700

nutrients. Therefore, this family of regressors can be considered the best for
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Figure 7: Scatter plot of the true Zn soil fertility indices (horizontal axis) and predicted values

by extraTrees (vertical axis).

these datasets, confirming the good result of random forests for soil classifica-

tion in our previous work (Sirsat et al., 2017). The svr, two gradient boosting

ensembles (bstTree and gbm) and M5 rule with nearest neighbors (cubist) are

also included among the ten bests regressors.705

Tables 12 and 13 report for each regressor the Friedman ranking (Garćıa

et al., 2007), alongside with the average value, of R2 over the five soil fertility

indices. This ranking compares the regressors by sorting, for each dataset, the

regressors by decreasing R2; and averaging, for each regressor, its positions over

all the datasets. This average position is the Friedman rank of each regressor,710

which decreases with its performance. As an example, extraTrees achieves a

Friedman rank of 1.6, which means that, in average over all the fertility indices,

it is in the position 1.6, i.e., it achieves a R2 value between the first and sec-

ond bests. ExtraTrees also achieves the best average R2 over all the indices

(0.64871). Other four regressors of the random forest family (RRF, rf, qrf, and715

Boruta) are placed in the first positions, but their average R2 is about 0.62, far

from extraTrees. Two gradient boosting ensembles (bstTree and gbm), support

vector regression (svr) and cubist (a prototype based model) are placed in po-
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Pos. Regressor Rank Avg. R2 Pos. Regressor Rank Avg. R2

1 extraTrees 1.6 0.64871 20 grnn 20.0 0.51817

2 RRF 3.6 0.62068 21 treebag 20.0 0.51556

3 rf 4.4 0.62073 22 brnn 24.6 0.47832

4 Boruta 4.6 0.61860 23 blackboost 26.2 0.45562

5 gbm 5.4 0.60925 24 xgbTree 26.8 0.45439

6 bstTree 6.6 0.60477 25 SBC 27.0 0.45688

7 qrf 7.0 0.60161 26 ppr 28.0 0.44224

8 cubist 7.2 0.60135 27 bag 29.8 0.42918

9 svr 8.0 0.59143 28 rbf 30.4 0.40448

10 bartMachine 11.0 0.58294 29 penalized 32.6 0.39782

11 krlsRadial 11.6 0.57017 30 bagEarth 32.8 0.39311

12 svmRadial 11.8 0.57208 31 qrnn 33.0 0.41615

13 gaussprRadial 15.6 0.53938 32 dlkeras 34.8 0.38941

14 nodeHarvest 15.6 0.54150 33 mlpWD 35.4 0.39711

15 elm-kernel 16.2 0.55008 34 relaxo 37.0 0.34945

16 avNNet 17.2 0.53013 35 pcaNNet 37.2 0.41050

17 kknn 17.2 0.54036 36 kernelpls 39.2 0.32962

18 rvmRadial 17.4 0.52193 37 M5 39.6 0.35117

19 cforest 18.4 0.52397 38 bdk 40.0 0.36505

Table 12: Friedman ranking and average of R2 over the five fertility indices (continued in

Table 13).

sitions 5–10, with R2 about 0.60. Figure 8 plots the RMSE and R2 Friedman

ranks in the vertical and horizontal axis, respectively, for the 20 best regressors,720

showing the high agreement between both rankings (excepts perhaps for the

last five regressors).

Figure 9 shows the boxplots of the R2 achieved by the 20 best regressors in

the Friedman rank over the 5 fertility indices. ExtraTrees exhibits the highest

box, whose median and 75% quartile are much above the other regressors. The725

boxes of RRF, rf and Boruta have similar 75% quartiles, at the same level as the

extraTree median, and their upper wiskers are near extraTrees (about 0.7). The

remaining regressors (gbm, bstTree, qrf, cubist, svr, bartMachine, krlsRadial

and svmRadial) already have 75% quartiles below 0.65. This quartile is also
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Pos. Regressor Rank Avg. R2 Pos. Regressor Rank Avg. R2

39 simpls 40.2 0.32962 58 glmStepAIC 58.0 0.14192

40 ctree2 40.8 0.36034 59 enpls.fs 58.8 0.16824

41 rpart 41.8 0.36785 60 rlm 58.8 0.14370

42 earth 42.6 0.32094 61 bayesglm 60.4 0.12848

43 elm 44.4 0.31991 62 randomGLM 60.4 0.19083

44 evtree 45.2 0.34207 63 ridge 60.6 0.13352

45 gamboost 45.4 0.28460 64 gaussprPoly 61.0 0.14966

46 rqlasso 47.8 0.28258 65 superpc 61.2 0.17950

47 spls 48.2 0.24639 66 mlpWDml 62.2 0.08535

48 rqnc 48.2 0.28611 67 gaussprLinear 62.6 0.12575

49 bstSm 51.4 0.23189 68 glm 62.8 0.12528

50 lars 51.4 0.21194 69 lm 63.8 0.12528

51 glmboost 51.4 0.20804 70 pcr 64.2 0.07110

52 nnls 53.0 0.24744 71 icr 64.4 0.07813

53 BstLm 53.2 0.20171 72 lasso 64.8 0.12528

54 foba 53.6 0.22582 73 gam 65.8 0.12528

55 plsRglm 54.6 0.20109 74 dnn 70.4 0.02021

56 spikeslab 55.0 0.16413 75 glmnet 72.8 0.00156

57 xgbLinear 56.0 0.14465 76 partDSA 74.0 0.00420

Table 13: Continuation of Table 12.

above 0.6 for NodeHarvest, but it exhibits the tallest box, which means an730

unstable behavior compared to the previous regressors.

It is interesting to analyze the best regressors of the remaining families (sub-

section 4.2). The best least squares regressor is krlsRadial (Table 12), which

is located in position 11 with R2 = 0.57. The position 13 is for gaussprRadial

(Gaussian process). The best performing neural network is elm-kernel (position735

15), although avNNet and generalized regression neural network (grnn) also

achieve good results (positions 16 and 20, respectively). The best regression

tree is nodeHarvest (position 14), while treebag is the best bagging ensemble

(position 21). Two regressors included in “other methods” achieve good posi-

tions: substractive clustering and fuzzy C-means (SBC, position 25), projection740

pursuit regression (ppr, position 26). The best GLM is penalized (position 29),
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Figure 8: Friedman rank of the RMSE vs. the Friedman rank of R2 for the 20 best regressors

in Table 12.
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Figure 9: Boxplot of the R2 achieved by the 20 best regressors on the five fertility indices.

and position 31 is for quantile regression neural network (qrnn), followed by

dlkeras (deep learning). The LASSO regressor relaxo is located in position 34

and the PLS regressor kernelpls is in position 36. Finally, the best regressors

of several classical families achieve poor results (positions after 50 with R2 <745

0.2): linear regression (regressor rlm, position 60), ridge regression (position 63),

principal component regression (superpc, position 65) and generalized additive
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Pos. Regressor p-value Pos. Regressor p-value Pos. Regressor p-value

1 rf 0.54762 26 enpls.fs 0.00794 51 gaussprPoly 0.00794

2 Boruta 0.42063 27 grnn 0.00794 52 rqnc 0.00794

3 gbm 0.42063 28 blackboost 0.00794 53 penalized 0.00794

4 RRF 0.42063 29 glmnet 0.00794 54 icr 0.00794

5 qrf 0.30952 30 earth 0.00794 55 relaxo 0.00794

6 bstTree 0.30952 31 rpart 0.00794 56 bag 0.00794

7 cubist 0.22222 32 bagEarth 0.00794 57 M5 0.00794

8 svr 0.15079 33 kernelpls 0.00794 58 rbf 0.00794

9 bartMachine 0.09524 34 simpls 0.00794 59 SBC 0.00794

10 krlsRadial 0.05556 35 rlm 0.00794 60 glmboost 0.00794

11 nodeHarvest 0.05556 36 ridge 0.00794 61 elm 0.00794

12 svmRadial 0.05556 37 nnls 0.00794 62 spikeslab 0.00794

13 elm-kernel 0.03175 38 lars 0.00794 63 pcaNNet 0.00794

14 bstSm 0.03175 39 pcr 0.00794 64 ctree2 0.00794

15 avNNet 0.03175 40 lasso 0.00794 65 plsRglm 0.00794

16 gaussprRadial 0.03175 41 ppr 0.00794 66 bdk 0.00794

17 rvmRadial 0.03175 42 glmStepAIC 0.00794 67 xgbLinear 0.00794

18 kknn 0.03175 43 xgbTree 0.00794 68 mlpWD 0.00794

19 cforest 0.03175 44 foba 0.00794 69 randomGLM 0.00794

20 gamboost 0.03175 45 superpc 0.00794 70 partDSA 0.00794

21 treebag 0.01587 46 gam 0.00794 71 evtree 0.00794

22 brnn 0.01587 47 gaussprLinear 0.00794 72 BstLm 0.00794

23 glm 0.00794 48 rqlasso 0.00794 73 mlpWDml 0.00794

24 lm 0.00794 49 bayesglm 0.00794 74 qrnn 0.00794

25 dlkeras 0.00794 50 spls 0.00794 75 dnn 0.00794

Table 14: List of the p-values, sorted decreasingly, achieved by the Wilcoxon signed rank test

comparing R2 of extraTrees and the remaining 75 regressors over the five soil fertility indices.

In bold, is the first regressor whose comparison to extraTrees is statistically significant (p <

0.05).

models (gamboost, position 45).

Table 14 reports the p-values for a Wilcoxon signed rank test (Wilcoxon,

1945) comparing the R2 achieved by extraTrees, which achieves the lowest Fried-750

man rank, sorted by descending order. The value in bold corresponds to the

regressor (elm-kernel, position 13 of 75) from which the difference with respect to
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extraTrees is statistically significant for a 5%-confidence level (p < 0.05). This

difference is not statistically significant until position 13 (elm-kernel). However,

the comparison of extraTrees and the second regressor (rf) exhibits a p-value755

(0.54762) much lower than 1, so the difference in R2 between extraTrees and rf,

and the following regressors, is high.

Pos. Regressor Rank Time Pos. Regressor Rank Time

1 relaxo 3.20 1.044 20 glmStepAIC 21.60 1.802

2 nnls 4.40 1.106 21 krlsRadial 21.80 1.794

3 kknn 4.60 1.145 22 blackboost 22.00 1.799

4 pcr 6.20 1.176 23 icr 23.00 1.941

5 ridge 7.20 1.168 24 mlpWDml 23.20 1.904

6 lasso 8.00 1.223 25 pcaNNet 24.20 2.204

7 glmnet 8.20 1.251 26 avNNet 24.40 1.993

8 rqnc 10.00 1.343 27 xgbTree 24.60 2.097

9 M5 11.80 1.386 28 gaussprPoly 24.80 2.036

10 rpart 12.60 1.388 29 cforest 25.80 2.053

11 BstLm 13.40 1.430 30 extraTrees 26.40 2.206

12 gbm 13.60 1.514 31 bstSm 28.60 2.263

13 partDSA 15.00 1.495 32 bayesglm 29.00 2.349

14 ctree2 15.60 1.509 33 bstTree 32.80 2.692

15 mlpWD 15.80 1.562 34 bagEarth 34.00 2.755

16 rqlasso 17.00 1.623 35 randomGLM 34.20 3.311

17 spls 17.20 1.692 36 bag 35.00 3.080

18 svmRadial 17.40 1.577 37 qrf 35.20 3.005

19 plsRglm 18.20 1.624 38 xgbLinear 39.00 5.531

Table 15: Friedman ranking and average time (over the five fertility indices), in seconds, for

each regressor (continued in Table 16).

Considering the speed of the different regressors, Tables 15 and 16 report

the Friedman ranking of elapsed times spent by each regressor, and the aver-

age time, over all the datasets for each regressor, sorted by increasing rank.760

These times include the training and testing stages after the parameter tuning,

without considering dependences of the regressors with the number of tunable

hyperparameters and values. The fastest regressor is relaxo, followed by nnls
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and kknn, which is in position 17 in the R2 rank (Table 12). Besides, gbm

is other regressor with good positions in the time and R2 rankings (12 and 5,765

respectively), and its average time (1.514 s.) is only slightly slower than relaxo

(1.044 s.). Even higher positions in the R2 ranking correspond to times only

slightly largers than the fastest regressors. Specifically, the best performing re-

gressor (extraTrees), which is in position 30 of the time Friedman rank, spends

an average of 2.206 s., which is only 2.11 times slower than the fastest regressor770

(relaxo). This difference can be considered small, so extraTrees is not only the

most accurate regressor, but also very fast. Also note that, although the average

times of most regressors are low (the 60 fastest regressors have average times

below 20 s.), the last regressors of the table are very slow, e.g. RRF, dlkeras,

Boruta and brnn (Bayesian regression neural network), with times above 100 s.,775

Pos. Regressor Rank Time Pos. Regressor Rank Time

39 bartMachine 39.20 5.634 58 penalized 58.20 16.781

40 evtree 40.20 7.008 59 dnn 58.80 17.713

41 SBC 40.60 6.491 60 glmboost 60.20 20.355

42 glm 42.60 9.554 61 elm 60.80 21.245

43 foba 43.60 10.010 62 elm-kernel 62.40 23.807

44 lm 43.80 9.888 63 rbf 63.00 27.254

45 rlm 45.20 10.373 64 grnn 63.60 27.725

46 rvmRadial 45.40 10.351 65 cubist 65.00 34.171

47 gaussprLinear 46.80 10.738 66 bdk 66.00 43.362

48 lars 48.20 10.885 67 spikeslab 67.00 45.654

49 enpls.fs 48.60 11.096 68 rf 68.00 54.220

50 simpls 48.60 11.040 69 svr 69.00 70.999

51 kernelpls 49.20 11.126 70 gamboost 70.00 78.804

52 gaussprRadial 49.60 11.200 71 RRF 71.00 114.762

53 superpc 51.20 11.659 72 dlkeras 72.00 193.679

54 gam 53.40 12.574 73 Boruta 73.00 513.723

55 earth 54.80 13.409 74 brnn 74.00 637.354

56 ppr 56.40 15.023 75 nodeHarvest 75.20 13078.245

57 treebag 56.60 14.879 76 qrnn 75.80 14109.732

Table 16: Continnuation of Table 15.
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and nodeHarvest and qrnn, with times above 10,000 s.
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Figure 10: Friedman rank of the time (vertical axis) against the Friedman rank of the R2

(horizontal axis) for the 20 best regressors over the five soil fertility indices.

Figure 10 plots the Friedman rank of the times against the Friedman rank

of R2 for the 20 best performing regressors in Table 12. ExtraTrees is placed on

the left end of the plot (R2 rank about 1-2), being the 7th fastest in the plot after

kknn, gbm, svmRadial, krlsRadial, avNNet and cforest, which however perform780

much worse than extraTrees. Among the other best regressors, rf, RRF and

Boruta exhibit slightly lower R2 than extraTrees, being much slower (time rank

above 70). BstTree and qrf are slightly slower (higher time rank) than extra-

Trees, while svr, cubist and elm-kernel are much slower than extraTrees (time

rank above 60-70) with much higher R2 ranks (about 8 and 16, respectively).785

7. Conclusions

Agriculture is a pillar of the Indian economy, but it is extremely dependend

on factors such as soil quality, weather condition and fertilizer management.

The application of the right fertilizers in the right amounts is a very relevant

issue which requires detailed information about the fertility levels of several790

nutrients for each village (e.g., which nutrient is defficient or excessive). The
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creation of maps for different nutrients with their fertility indices in different

villages is very important for an adequate fertilizer application, to avoid soil

degradation and to optimize the crop yield. The automatic prediction of these

village-wise soil fertility indices for several nutrients, namely organic carbon,795

P2O5, Fe, Mn and Zn, would be very useful for the Indian Government in the

creation of such fertility maps. Besides, the prediction of the fertility indices for

these nutrients from measurements of soil N2O, P2O5, K2O, SO4 and electri-

cal conductivity, among others, would reduce the cost of the chemical analysis

and save time for specialized technicians in the creation of fertility maps. The800

current paper uses regression techniques to automatically predict village-wise

soil fertility indices for the previous nutrients in soils of the Indian state of

Maharashtra. We compare 76 regressors belonging to 20 families including neu-

ral networks, deep learning, support vector regression, random forests, partial

least squares, bagging and boosting, quantile regression and generalized additive805

models, among many others. Globally, the ensemble of extremely randomized

regression trees (extraTrees) achieves the best performance, both in terms of

root mean squared error (RMSE) and determination coefficient (R2), followed

by regularized random forest, random forests, and random forest with feature

selection (Boruta), with similar performance but low speed. Other regressors810

with good performance are: gradient boosting of regression trees (bstTree) and

generalized boosting regression (gbm); quantile random forest, M5 rule-based

model with corrections based on nearest neighbors (cubist) and support vector

regression (svr). The prediction quality achieves R2 values between 0.57 and

0.70 (correlation values about 0.75-0.83), depending on the nutrient, which ac-815

cording to Colton (1974) correspond to relations between true and predicted

fertility indices from very good to excellent. Rounding the values of fertility

index to the standard fertility levels defined by the Indian Government (low,

medium and high), these results corresponds to accuracy and Cohen kappa val-

ues in the ranges 79%-97% and 52%-81%, respectively, which can be considered820

as fairly accurate. The extraTrees also provide the best trade-off between per-

formance and execution time, being in average just twice slower than the fastest
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regressor in the whole collection. In the future work, we expect to collect ad-

ditional data for those nutrients whose available patterns only belong to one

fertility level, and to include the fertility indices of new nutrients of interest.825
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